1. Riemann-Lebesgue lemma. Let $\varphi: \mathbb{R} \rightarrow \mathbb{C}$ be a 2π-periodic piecewise continuous function. Let $f:[a, b] \rightarrow \mathbb{C}$ be a piecewise continuous function. We want to show that

$$
\lim _{n \rightarrow+\infty} \int_{a}^{b} f(t) e^{i n t} d t=0
$$

(a) Show that

$$
\lim _{n \rightarrow+\infty} \int_{a}^{b} f(t) \varphi(n t) d t=\frac{1}{2 \pi}\left(\int_{0}^{2 \pi} \varphi(t) d t\right)\left(\int_{a}^{b} f(t) d t\right) .
$$

Hints: Denote $K=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(t) d t$. We want to show that

$$
\lim _{n \rightarrow+\infty} \int_{a}^{b} f(t)(\varphi(n t)-K) d t=0 \text {, i.e., }
$$

$\lim _{n \rightarrow+\infty} \int_{a}^{b} f(t) \psi(n t) d t=0$ with $\psi=\varphi-K$. Note that $\int_{0}^{2 \pi} \psi(t) d t=0$. Prove the result in three steps: first when f is a characteristic function $\chi_{[\alpha, \beta]}$ with $[\alpha, \beta] \subset[a, b]$, then when f is a step function, then for a general f, which can be approximated by a step function.
(b) Show that $\int_{0}^{2 \pi} e^{i t} d t=0$ and conclude.
2. Fejér's theorem. Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be continuous and 2π-periodic. For all $n \geq 0$, define the functions

$$
S_{n}=\sum_{k=-n}^{n} c_{k}(f) e_{k}, \quad C_{n}=\frac{S_{0}+\cdots+S_{n}}{n+1}
$$

and

$$
\tilde{S}_{n}=\sum_{k=-n}^{n} e_{k}, \quad \tilde{C}_{n}=\frac{\tilde{S}_{0}+\cdots+\tilde{S}_{n}}{n+1} .
$$

(a) Check that for all $n, \frac{1}{2 \pi} \int_{-\pi}^{\pi} \tilde{C}_{n}(t) d t=1$, and show that $\forall \alpha \in(0, \pi)$, the sequence of functions $\left(\tilde{C}_{n}\right)$ converges uniformly to 0 on $[-\pi, \pi] \backslash[-\alpha, \alpha]$.
(b) Deduce from this that the sequence of functions $\left(C_{n}\right)$ converges uniformly to f on \mathbb{R}. In particular, f can be uniformly approximated by trigonometric polynomials.

