- Problems -

1. **Riemann-Lebesgue lemma.** Let $\varphi : \mathbb{R} \to \mathbb{C}$ be a 2π -periodic piecewise continuous function. Let $f : [a, b] \to \mathbb{C}$ be a piecewise continuous function. We want to show that

$$\lim_{n \to +\infty} \int_{a}^{b} f(t) e^{int} dt = 0.$$

(a) Show that

$$\lim_{n \to +\infty} \int_{a}^{b} f(t)\varphi(nt)dt = \frac{1}{2\pi} \left(\int_{0}^{2\pi} \varphi(t)dt \right) \left(\int_{a}^{b} f(t)dt \right).$$

Hints: Denote $K = \frac{1}{2\pi} \int_0^{2\pi} \varphi(t) dt$. *We want to show that*

$$\lim_{n \to +\infty} \int_{a}^{b} f(t) \Big(\varphi(nt) - K \Big) dt = 0, i.e.,$$

 $\lim_{n\to+\infty}\int_a^b f(t)\psi(nt)dt = 0$ with $\psi = \varphi - K$. Note that $\int_0^{2\pi}\psi(t)dt = 0$. Prove the result in three steps: first when f is a characteristic function $\chi_{[\alpha,\beta]}$ with $[\alpha,\beta] \subset [a,b]$, then when f is a step function, then for a general f, which can be approximated by a step function.

- (b) Show that $\int_0^{2\pi} e^{it} dt = 0$ and conclude.
- 2. Fejér's theorem. Let $f : \mathbb{R} \to \mathbb{C}$ be continuous and 2π -periodic. For all $n \ge 0$, define the functions

$$S_n = \sum_{k=-n}^n c_k(f)e_k, \quad C_n = \frac{S_0 + \dots + S_n}{n+1}$$

and

$$\tilde{S}_n = \sum_{k=-n}^n e_k, \quad \tilde{C}_n = \frac{\tilde{S}_0 + \dots + \tilde{S}_n}{n+1}.$$

- (a) Check that for all $n, \frac{1}{2\pi} \int_{-\pi}^{\pi} \tilde{C}_n(t) dt = 1$, and show that $\forall \alpha \in (0, \pi)$, the sequence of functions (\tilde{C}_n) converges uniformly to 0 on $[-\pi, \pi] \setminus [-\alpha, \alpha]$.
- (b) Deduce from this that the sequence of functions (C_n) converges uniformly to f on \mathbb{R} . In particular, f can be uniformly approximated by trigonometric polynomials.